作者:Xinwei MT Capital
TL;DR
- 并行EVM的必要性在于它解决了传统EVM按顺序处理交易的效率问题,通过允许多个操作同时执行,显著提高了网络的吞吐量和性能。
- 并行EVM的实现方法包括基于调度的并发处理、多线程EVM实例、系统级分片,同时面临诸如不可靠时间戳、区块链确定性和验证者收益导向等技术挑战。
- Monad Labs通过其Layer 1项目Monad,旨在通过独特技术特性显著提升区块链的可扩展性和交易速度,特点包括每秒处理高达10,000笔交易、1秒区块时间、并行执行能力和MonadBFT共识机制。
- Sei V2是Sei网络的重要升级,旨在成为首个完全并行化的EVM,提供向后兼容EVM智能合约、乐观并行化、新的SeiDB数据结构和与现有链的互操作性,旨在大幅提升交易处理速度和网络可扩展性。
- Neon EVM是在Solana上的平台,旨在为以太坊dApps提供高效、安全、去中心化的环境,允许开发者轻松部署和运行dApps,同时利用Solana的高吞吐量和低成本优势。
- Lumio是Pontem Network开发的一种Layer 2解决方案,它通过独特支持EVM和Aptos使用的Move VM,创新地解决了以太坊的可扩展性挑战,将Web3体验提升至接近Web2水平。
- Eclipse是一个以太坊Layer 2解决方案,使用SVM加速交易处理,采用模块化rollup架构,整合了以太坊结算、SVM智能合约、Celestia数据可用性和RISC Zero欺诈证明。
- Solana利用其Sealevel技术实现并行智能合约处理,Sui通过Narwhal和Bullshark组件提高吞吐量,Fuel通过UTXO模型实现并行交易执行,而Aptos使用Block-STM引擎以提升交易处理能力,均展现了区块链领域中并行技术的不同实现和优势。
- 采用并行的主要挑战包括解决数据竞争和读写冲突问题,确保技术与现有标准兼容,适应新的生态系统交互模式,以及管理系统复杂性增加,特别是在安全性和资源分配方面。
- 并行EVM展示了在增强区块链可扩展性和效率方面的巨大潜力,标志着区块链技术的一次重大转变,通过多处理器同时执行事务来提高交易处理能力,突破了传统顺序交易处理的限制。虽然并行EVM提供了巨大的潜力,但它们的成功实施需要克服复杂的技术挑战,并确保广泛的生态系统采用。
并行EVM的基本概念
EVM简介
以太坊虚拟机(EVM)是以太坊区块链的核心组件,充当其计算引擎。它是一个准图灵完备的机器,为以太坊网络上的智能合约执行提供运行环境,这对于维护整个以太坊生态系统中的信任和一致性至关重要。
EVM通过处理字节码来执行智能合约,这是将通常用高级编程语言(如Solidity)编写的智能合约代码编译成的更基本形式。这些字节码由一系列操作码(opcode)组成,用于执行各种功能,包括算术运算和数据存储/检索。EVM作为一个堆栈机器运行,以后进先出的方式处理操作,EVM中的每个操作都有相关的gas成本。这个gas系统衡量执行操作所需的计算工作,确保公平的资源分配并防止网络滥用。
在以太坊中,交易在EVM的功能中扮演着重要角色。有两种类型的交易:一种是导致消息调用的交易,另一种是导致合同创建的交易。合约创建会导致创建一个包含编译后的智能合约字节码的新合约账户,当另一个账户对该合约进行消息调用时,就会执行其字节码。
EVM的架构包括字节码、堆栈、内存和存储等组件。它有一个专用的内存空间,用于在执行过程中临时存储数据,以及一个在区块链上用于无限期保存数据的持久存储空间。EVM的设计确保了智能合约的安全执行环境,将它们隔离以防止重入攻击,并采用了各种安全措施,如gas和堆栈深度限制。
此外,EVM的影响力超出了以太坊,通过EVM兼容链延伸到了更广泛的范围。这些链虽然有所不同,但保持了与基于以太坊的应用的兼容性,使其能够与以太坊基础应用无缝互动。这些链在企业解决方案、GameFi和DeFi等各个领域发挥着关键作用。